If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+78x-4=0
a = 5; b = 78; c = -4;
Δ = b2-4ac
Δ = 782-4·5·(-4)
Δ = 6164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6164}=\sqrt{4*1541}=\sqrt{4}*\sqrt{1541}=2\sqrt{1541}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-2\sqrt{1541}}{2*5}=\frac{-78-2\sqrt{1541}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+2\sqrt{1541}}{2*5}=\frac{-78+2\sqrt{1541}}{10} $
| 0.4=0.1x-0.02 | | 4(2y+9)=3y | | 6x+(7-2)×x=8+3x-4 | | 4(9+3x)=72 | | 340=6x^2 | | (x-4)+(3x+10)=(4x+14) | | 5^3x=25(x+2) | | 2x+5+3x=45 | | 5.8x-14/10=16 | | 3x+20+3x-8=10x-12 | | 300m^2=75 | | y/2+10=-25 | | 3x-9+2x+6=7x-13 | | 103-x=219 | | -18.08+13.6k=-3.28+18.2k−15.26 | | 10+.15x=16.45 | | 50y^2-162=0 | | 6y^2-29y=22 | | 5/7y+10=13 | | 180=8+6x+4x+2 | | x-2+3x+3=6x-19 | | -2(4s-1)-2=-2(7s+4)-2 | | 3x+20+x+11=6x+7 | | x^2-20x=25=0 | | 8+3e=4(4) | | 2.4y=13.74 | | 7x=7x+11 | | 22.4x+8=22.4x+17 | | 14x+7=14x-22 | | 3x+13+x+20=7x-15 | | -3/z=-9z | | 246+x=360 |